Properties

Label 729.397.9.c1.a1
Order $ 3^{4} $
Index $ 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9^2$
Order: \(81\)\(\medspace = 3^{4} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $\left(\begin{array}{rr} 19 & 63 \\ 27 & 10 \end{array}\right), \left(\begin{array}{rr} 28 & 18 \\ 54 & 55 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_9^2.C_3^2$
Order: \(729\)\(\medspace = 3^{6} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Exponent: \(3\)
Automorphism Group: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_9^2.C_3^4.C_2^2$
$\operatorname{Aut}(H)$ $C_3^4:\GL(2,3)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(243\)\(\medspace = 3^{5} \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_3\times C_9^2$
Normalizer:$C_9^2.C_3^2$
Minimal over-subgroups:$C_3\times C_9^2$$C_9^2:C_3$$C_9^2.C_3$$C_9^2.C_3$
Maximal under-subgroups:$C_3\times C_9$$C_3\times C_9$

Other information

Möbius function$3$
Projective image$\He_3:C_3^2$