Subgroup ($H$) information
| Description: | $C_9^2:C_3$ |
| Order: | \(243\)\(\medspace = 3^{5} \) |
| Index: | \(3\) |
| Exponent: | \(9\)\(\medspace = 3^{2} \) |
| Generators: |
$\left(\begin{array}{rr}
76 & 56 \\
30 & 31
\end{array}\right), \left(\begin{array}{rr}
64 & 72 \\
27 & 19
\end{array}\right)$
|
| Nilpotency class: | $4$ |
| Derived length: | $2$ |
The subgroup is normal, maximal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_9^2.C_3^2$ |
| Order: | \(729\)\(\medspace = 3^{6} \) |
| Exponent: | \(9\)\(\medspace = 3^{2} \) |
| Nilpotency class: | $4$ |
| Derived length: | $2$ |
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_3$ |
| Order: | \(3\) |
| Exponent: | \(3\) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_9^2.C_3^4.C_2^2$ |
| $\operatorname{Aut}(H)$ | $C_3^4.(C_3\times S_3)$, of order \(1458\)\(\medspace = 2 \cdot 3^{6} \) |
| $\operatorname{res}(S)$ | $C_3^4.(C_3\times S_3)$, of order \(1458\)\(\medspace = 2 \cdot 3^{6} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) |
| $W$ | $\He_3:C_3$, of order \(81\)\(\medspace = 3^{4} \) |
Related subgroups
Other information
| Möbius function | $-1$ |
| Projective image | $\He_3:C_3^2$ |