Properties

Label 729.397.3.c1.b1
Order $ 3^{5} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9^2:C_3$
Order: \(243\)\(\medspace = 3^{5} \)
Index: \(3\)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $\left(\begin{array}{rr} 76 & 56 \\ 30 & 31 \end{array}\right), \left(\begin{array}{rr} 64 & 72 \\ 27 & 19 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_9^2.C_3^2$
Order: \(729\)\(\medspace = 3^{6} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_9^2.C_3^4.C_2^2$
$\operatorname{Aut}(H)$ $C_3^4.(C_3\times S_3)$, of order \(1458\)\(\medspace = 2 \cdot 3^{6} \)
$\operatorname{res}(S)$$C_3^4.(C_3\times S_3)$, of order \(1458\)\(\medspace = 2 \cdot 3^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$\He_3:C_3$, of order \(81\)\(\medspace = 3^{4} \)

Related subgroups

Centralizer:$C_9$
Normalizer:$C_9^2.C_3^2$
Complements:$C_3$ $C_3$ $C_3$ $C_3$ $C_3$
Minimal over-subgroups:$C_9^2.C_3^2$
Maximal under-subgroups:$\He_3:C_3$$C_9^2$$C_3.\He_3$$C_3.\He_3$
Autjugate subgroups:729.397.3.c1.a1729.397.3.c1.c1729.397.3.c1.d1729.397.3.c1.e1729.397.3.c1.f1

Other information

Möbius function$-1$
Projective image$\He_3:C_3^2$