Properties

Label 729.300.27.m1
Order $ 3^{3} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\He_3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(3\)
Generators: $acd^{2}, be$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $\He_3:\He_3$
Order: \(729\)\(\medspace = 3^{6} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_3^2:S_3$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(81\)\(\medspace = 3^{4} \)
$W$$C_3^2$, of order \(9\)\(\medspace = 3^{2} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3\times \He_3$
Normal closure:$C_3^4:C_3$
Core:$C_3$
Minimal over-subgroups:$C_3\times \He_3$
Maximal under-subgroups:$C_3^2$$C_3^2$

Other information

Number of subgroups in this autjugacy class$108$
Number of conjugacy classes in this autjugacy class$12$
Möbius function$0$
Projective image$\He_3:C_3^2$