Subgroup ($H$) information
| Description: | $C_3^2$ | 
| Order: | \(9\)\(\medspace = 3^{2} \) | 
| Index: | \(81\)\(\medspace = 3^{4} \) | 
| Exponent: | \(3\) | 
| Generators: | $cd, d$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_3^3.C_3^3$ | 
| Order: | \(729\)\(\medspace = 3^{6} \) | 
| Exponent: | \(9\)\(\medspace = 3^{2} \) | 
| Nilpotency class: | $3$ | 
| Derived length: | $2$ | 
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^6.C_3^4.C_3.D_6$ | 
| $\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| $\operatorname{res}(S)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(19683\)\(\medspace = 3^{9} \) | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
| Centralizer: | $C_9:C_3^3$ | |
| Normalizer: | $C_9:C_3^3$ | |
| Normal closure: | $C_3^3$ | |
| Core: | $C_3$ | |
| Minimal over-subgroups: | $C_3^3$ | $C_3^3$ | 
| Maximal under-subgroups: | $C_3$ | $C_3$ | 
Other information
| Number of subgroups in this autjugacy class | $9$ | 
| Number of conjugacy classes in this autjugacy class | $3$ | 
| Möbius function | $0$ | 
| Projective image | $\He_3:C_3^2$ | 
