Subgroup ($H$) information
Description: | $A_6.C_{10}$ |
Order: | \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
Index: | \(2\) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Generators: |
$\langle(1,3,4,2,5)(6,7)(9,13)(10,12)(11,14), (1,2,3,5,4)(7,10,11,15)(8,9,12,13), (1,2,3,5,4)\rangle$
|
Derived length: | $1$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and nonsolvable.
Ambient group ($G$) information
Description: | $A_6.D_{10}$ |
Order: | \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_5\times S_6:C_2$, of order \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \) |
$\operatorname{Aut}(H)$ | $C_4\times S_6:C_2$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \) |
$W$ | $S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $A_6.D_{10}$ |