Properties

Label 7200.eb.2.c1.a1
Order $ 2^{4} \cdot 3^{2} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_6.C_{10}$
Order: \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\langle(1,3,4,2,5)(6,7)(9,13)(10,12)(11,14), (1,2,3,5,4)(7,10,11,15)(8,9,12,13), (1,2,3,5,4)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $A_6.D_{10}$
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times S_6:C_2$, of order \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_4\times S_6:C_2$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$W$$S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$A_6.D_{10}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$A_6.D_{10}$
Maximal under-subgroups:$C_5\times A_6$$A_6.C_2$$C_5\times \PSU(3,2)$$C_5\times F_5$$C_5\times \SD_{16}$

Other information

Möbius function$-1$
Projective image$A_6.D_{10}$