Subgroup ($H$) information
Description: | $C_5\times \SD_{16}$ |
Order: | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
Index: | \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \) |
Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Generators: |
$\langle(1,3,4,2,5)(6,8,11,12,15,9,13,7), (1,3,4,2,5)(6,15)(7,12)(8,9)(11,13), (1,2,3,5,4)(6,13,15,11)(7,9,12,8), (1,3,4,2,5)(6,13)(7,12)(11,15), (1,2,3,5,4)\rangle$
|
Nilpotency class: | $3$ |
Derived length: | $2$ |
The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
Description: | $S_6:C_{10}$ |
Order: | \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4\times S_6:C_2$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \) |
$\operatorname{Aut}(H)$ | $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \) |
$W$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $45$ |
Möbius function | $2$ |
Projective image | $S_6:C_2$ |