Properties

Label 7200.dx.90.d1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times \SD_{16}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $\langle(1,3,4,2,5)(6,8,11,12,15,9,13,7), (1,3,4,2,5)(6,15)(7,12)(8,9)(11,13), (1,2,3,5,4)(6,13,15,11)(7,9,12,8), (1,3,4,2,5)(6,13)(7,12)(11,15), (1,2,3,5,4)\rangle$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $S_6:C_{10}$
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times S_6:C_2$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$D_8:C_{10}$
Normal closure:$S_6:C_{10}$
Core:$C_5$
Minimal over-subgroups:$F_9:C_{10}$$D_8:C_{10}$
Maximal under-subgroups:$C_5\times D_4$$C_5\times Q_8$$C_{40}$$\SD_{16}$

Other information

Number of subgroups in this conjugacy class$45$
Möbius function$2$
Projective image$S_6:C_2$