Properties

Label 7200.dx.100.c1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{2} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$F_9$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(6,8,12,14)(9,10,11,15), (6,9,8,10,12,11,14,15), (6,11,14)(8,9,12)(10,15,13), (6,12)(8,14)(9,11)(10,15), (6,13,12)(8,11,10)(9,14,15)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $S_6:C_{10}$
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times S_6:C_2$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_5$
Normalizer:$F_9:C_{10}$
Normal closure:$\PGL(2,9)$
Core:$C_1$
Minimal over-subgroups:$\PGL(2,9)$$C_5\times F_9$$F_9:C_2$
Maximal under-subgroups:$C_3^2:C_4$$C_8$

Other information

Number of subgroups in this conjugacy class$10$
Möbius function$-1$
Projective image$S_6:C_{10}$