Properties

Label 720.659.6.k1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_{20}$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ac, d^{6}, d^{15}, b, d^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_5\times D_6:D_6$
Order: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2.C_2^3$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_{12}:C_2^3$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_{12}:C_2^3$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$C_{20}:D_6$
Normal closure:$C_{30}.D_6$
Core:$S_3\times C_{10}$
Minimal over-subgroups:$C_{30}.D_6$$C_{20}:D_6$
Maximal under-subgroups:$S_3\times C_{10}$$C_{60}$$C_3:C_{20}$$C_2\times C_{20}$$C_4\times S_3$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$S_3\times D_6$