Properties

Label 714.8.51.a1.a1
Order $ 2 \cdot 7 $
Index $ 3 \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Index: \(51\)\(\medspace = 3 \cdot 17 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $a, b^{255}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a Hall subgroup.

Ambient group ($G$) information

Description: $S_3\times C_{119}$
Order: \(714\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 17 \)
Exponent: \(714\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\times C_{48}$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{238}$
Normalizer:$C_{238}$
Normal closure:$S_3\times C_7$
Core:$C_7$
Minimal over-subgroups:$C_{238}$$S_3\times C_7$
Maximal under-subgroups:$C_7$$C_2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$S_3\times C_{17}$