Properties

Label 709236.a.12.b1
Order $ 3^{3} \cdot 11 \cdot 199 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{597}:C_{99}$
Order: \(59103\)\(\medspace = 3^{3} \cdot 11 \cdot 199 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(19701\)\(\medspace = 3^{2} \cdot 11 \cdot 199 \)
Generators: $a^{132}, b^{18}, a^{18}, b^{1194}, a^{110}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{18}\times F_{199}$
Order: \(709236\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1791}.C_{33}.C_6^2.C_2$
$\operatorname{Aut}(H)$ $C_{199}:(C_{11}:(C_{18}\times S_3))$
$W$$F_{199}$, of order \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)

Related subgroups

Centralizer:$C_{18}$
Normalizer:$C_{18}\times F_{199}$
Minimal over-subgroups:$C_{1791}:C_{99}$$C_{1194}:C_{99}$$C_3\times F_{199}$
Maximal under-subgroups:$C_{597}:C_{33}$$C_{199}:C_{99}$$C_{597}:C_9$$C_3\times C_{99}$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$-2$
Projective image$C_6\times F_{199}$