Subgroup ($H$) information
Description: | $C_{597}:C_{99}$ |
Order: | \(59103\)\(\medspace = 3^{3} \cdot 11 \cdot 199 \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(19701\)\(\medspace = 3^{2} \cdot 11 \cdot 199 \) |
Generators: |
$a^{132}, b^{18}, a^{18}, b^{1194}, a^{110}$
|
Derived length: | $2$ |
The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
Description: | $C_{18}\times F_{199}$ |
Order: | \(709236\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 11 \cdot 199 \) |
Exponent: | \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_2\times C_6$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Outer Automorphisms: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{1791}.C_{33}.C_6^2.C_2$ |
$\operatorname{Aut}(H)$ | $C_{199}:(C_{11}:(C_{18}\times S_3))$ |
$W$ | $F_{199}$, of order \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $3$ |
Number of conjugacy classes in this autjugacy class | $3$ |
Möbius function | $-2$ |
Projective image | $C_6\times F_{199}$ |