Properties

Label 705600.b.235200._.A
Order $ 3 $
Index $ 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(235200\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \)
Exponent: \(3\)
Generators: $\left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $\SL(2,49).C_6$
Order: \(705600\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \)
Exponent: \(8400\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $\SL(2,49):C_2$
Order: \(235200\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \)
Exponent: \(8400\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \)
Automorphism Group: $\PSL(2,49):C_2^2$, of order \(235200\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $1$

The quotient is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times \PSL(2,49).C_2$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed