Subgroup ($H$) information
| Description: | $C_2\times Q_8$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Index: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$ac, b^{2}c^{2}, c^{6}$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
| Description: | $(C_2\times C_8).D_{22}$ |
| Order: | \(704\)\(\medspace = 2^{6} \cdot 11 \) |
| Exponent: | \(88\)\(\medspace = 2^{3} \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2^3\times C_{11}:C_5).C_2^6$ |
| $\operatorname{Aut}(H)$ | $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(160\)\(\medspace = 2^{5} \cdot 5 \) |
| $W$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $11$ |
| Möbius function | $-2$ |
| Projective image | $D_4\times D_{11}$ |