Subgroup ($H$) information
| Description: | $C_4:C_{44}$ |
| Order: | \(176\)\(\medspace = 2^{4} \cdot 11 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
| Generators: |
$b, d, b^{2}, c^{6}, c^{4}$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
| Description: | $(C_2\times C_8).D_{22}$ |
| Order: | \(704\)\(\medspace = 2^{6} \cdot 11 \) |
| Exponent: | \(88\)\(\medspace = 2^{3} \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2^3\times C_{11}:C_5).C_2^6$ |
| $\operatorname{Aut}(H)$ | $C_2^5:C_{10}$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_{20}:C_2^3$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(176\)\(\medspace = 2^{4} \cdot 11 \) |
| $W$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
| Centralizer: | $C_2\times C_{22}$ | ||
| Normalizer: | $(C_2\times C_8).D_{22}$ | ||
| Minimal over-subgroups: | $D_4:C_{44}$ | $D_{22}:Q_8$ | $C_{22}.D_8$ |
| Maximal under-subgroups: | $C_2\times C_{44}$ | $C_2\times C_{44}$ | $C_4:C_4$ |
Other information
| Möbius function | $2$ |
| Projective image | $D_4\times D_{11}$ |