Properties

Label 704.312.4.c1.a1
Order $ 2^{4} \cdot 11 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4:C_{44}$
Order: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $b, d, b^{2}, c^{6}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $(C_2\times C_8).D_{22}$
Order: \(704\)\(\medspace = 2^{6} \cdot 11 \)
Exponent: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times C_{11}:C_5).C_2^6$
$\operatorname{Aut}(H)$ $C_2^5:C_{10}$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{20}:C_2^3$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(176\)\(\medspace = 2^{4} \cdot 11 \)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_{22}$
Normalizer:$(C_2\times C_8).D_{22}$
Minimal over-subgroups:$D_4:C_{44}$$D_{22}:Q_8$$C_{22}.D_8$
Maximal under-subgroups:$C_2\times C_{44}$$C_2\times C_{44}$$C_4:C_4$

Other information

Möbius function$2$
Projective image$D_4\times D_{11}$