Properties

Label 704.104.2.a1.a1
Order $ 2^{5} \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{44}:Q_8$
Order: \(352\)\(\medspace = 2^{5} \cdot 11 \)
Index: \(2\)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $a, c^{22}, c^{33}, c^{4}, b^{2}c^{11}, b^{4}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, nonabelian, elementary for $p = 2$ (hence hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{44}.D_8$
Order: \(704\)\(\medspace = 2^{6} \cdot 11 \)
Exponent: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}.(C_2^5\times C_{10}).C_2^2$
$\operatorname{Aut}(H)$ $C_{10}\times C_2^4.C_2^4.C_2$
$\operatorname{res}(\operatorname{Aut}(G))$$C_{10}\times D_4^2$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(44\)\(\medspace = 2^{2} \cdot 11 \)
$W$$C_2^2:C_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_{22}$
Normalizer:$C_{44}.D_8$
Minimal over-subgroups:$C_{44}.D_8$
Maximal under-subgroups:$C_4\times C_{44}$$C_4:C_{44}$$C_4:C_{44}$$C_4:C_{44}$$Q_8\times C_{22}$$C_4:Q_8$

Other information

Möbius function$-1$
Projective image$C_{22}.D_4$