Properties

Label 700.35.2.b1.a1
Order $ 2 \cdot 5^{2} \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:D_{35}$
Order: \(350\)\(\medspace = 2 \cdot 5^{2} \cdot 7 \)
Index: \(2\)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Generators: $a, c^{42}, c^{10}, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_5:D_{70}$
Order: \(700\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 7 \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_5^2:C_4.S_5\times F_7$
$\operatorname{Aut}(H)$ $C_5^2:C_4.S_5\times F_7$
$\card{\operatorname{res}(S)}$\(504000\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{3} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_5:D_{35}$, of order \(350\)\(\medspace = 2 \cdot 5^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_5:D_{70}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_5:D_{70}$
Maximal under-subgroups:$C_5\times C_{35}$$D_{35}$$D_{35}$$D_{35}$$D_{35}$$D_{35}$$D_{35}$$C_5:D_5$
Autjugate subgroups:700.35.2.b1.b1

Other information

Möbius function$-1$
Projective image$C_5:D_{70}$