Properties

Label 70.2.14.a1.a1
Order $ 5 $
Index $ 2 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(5\)
Generators: $b^{21}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $5$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_5\times D_7$
Order: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $D_7$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_3$, of order \(3\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_5\times D_7$
Normalizer:$C_5\times D_7$
Complements:$D_7$
Minimal over-subgroups:$C_{35}$$C_{10}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$7$
Projective image$D_7$