Properties

Label 69984.jj.5832.CY
Order $ 2^{2} \cdot 3 $
Index $ 2^{3} \cdot 3^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a, b^{3}, e^{2}f^{2}g^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Ambient group ($G$) information

Description: $S_4\times C_3^4.S_3^2$
Order: \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times C_3^4.S_3^2$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure:$S_4\times C_3.\He_3:S_3$
Core:$C_1$
Minimal over-subgroups:$S_3^2$
Maximal under-subgroups:$S_3$$S_3$$C_2^2$

Other information

Number of subgroups in this autjugacy class$108$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_4\times C_3^4.S_3^2$