Properties

Label 69984.jj.36.A
Order $ 2^{3} \cdot 3^{5} $
Index $ 2^{2} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_4\times C_3^4$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, g^{3}, b^{2}, c, e^{2}, f^{3}, e^{3}f^{3}, d^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $S_4\times C_3^4.S_3^2$
Order: \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $S_3^2$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times C_3^4.S_3^2$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $S_4\times C_2.\PSL(4,3).C_2$
$W$$S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3^4$
Normalizer:$S_4\times C_3^4.S_3^2$
Minimal over-subgroups:$S_4\times C_3^4:C_3$$S_4\times C_3^4.C_3$$S_4\times C_3\times C_3\wr C_3$$C_3^2\times S_4\times C_3:S_3$$C_3^2\times S_4\times C_3:S_3$$C_3^2\times S_4\times C_3:S_3$
Maximal under-subgroups:$A_4\times C_3^4$$S_4\times C_3^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_4\times C_3^4.S_3^2$