Properties

Label 69984.jj.24.CH
Order $ 2^{2} \cdot 3^{6} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^5.D_6$
Order: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $b^{3}, c, g^{7}, d^{3}, b^{2}, g^{3}, e^{2}, d^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $S_4\times C_3^4.S_3^2$
Order: \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times C_3^4.S_3^2$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $C_3^3.S_3^3$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
$W$$C_2\times C_3^3.S_3^2$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^3.S_3^3$
Normal closure:$C_3^4:C_3.D_6\times A_4$
Core:$C_3^4.S_3$
Minimal over-subgroups:$(C_3^4.C_3):C_2^2\times A_4$$C_3\times C_3^4:C_3.D_6$$C_3^3.S_3^3$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_4\times C_3^4.S_3^2$