Subgroup ($H$) information
| Description: | $C_3^5.D_6$ |
| Order: | \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Generators: |
$b^{3}, c, g^{7}, d^{3}, b^{2}, g^{3}, e^{2}, d^{2}$
|
| Derived length: | $3$ |
The subgroup is nonabelian and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
| Description: | $S_4\times C_3^4.S_3^2$ |
| Order: | \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_4\times C_3^4.S_3^2$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \) |
| $\operatorname{Aut}(H)$ | $C_3^3.S_3^3$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \) |
| $W$ | $C_2\times C_3^3.S_3^2$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
Related subgroups
| Centralizer: | not computed | ||
| Normalizer: | $C_3^3.S_3^3$ | ||
| Normal closure: | $C_3^4:C_3.D_6\times A_4$ | ||
| Core: | $C_3^4.S_3$ | ||
| Minimal over-subgroups: | $(C_3^4.C_3):C_2^2\times A_4$ | $C_3\times C_3^4:C_3.D_6$ | $C_3^3.S_3^3$ |
Other information
| Number of subgroups in this autjugacy class | $12$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $S_4\times C_3^4.S_3^2$ |