Properties

Label 69984.jj.24.B
Order $ 2^{2} \cdot 3^{6} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: not computed
Generators: $b^{2}, e^{2}, g^{3}, c, d^{2}, f^{3}, e^{3}, g^{4}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and metabelian (hence solvable). Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $S_4\times C_3^4.S_3^2$
Order: \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times C_3^4.S_3^2$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ not computed
$W$$C_{2022}:C_{56}$, of order \(113232\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \cdot 337 \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$S_4\times C_3^4.S_3^2$
Complements:$C_2\times D_6$ $C_2\times D_6$ $C_2\times D_6$ $C_2\times D_6$ $C_2\times D_6$ $C_2\times D_6$ $C_2\times D_6$ $C_2\times D_6$ $C_2\times D_6$ $C_2\times D_6$ $C_2\times D_6$ $C_2\times D_6$
Minimal over-subgroups:$A_4\times C_3^3.C_3^3$$S_4\times C_3^4.C_3$$C_3:D_9:C_3^2\times A_4$$(C_3\times A_4).\He_3.C_6$$C_3^2:(C_2\times C_9:C_3)\times A_4$$(C_3^4.C_3):C_2\times A_4$$A_4.C_3^2:C_9.C_6$$C_6^2.C_3^4.C_2$
Maximal under-subgroups:$A_4\times C_3^4$$C_6^2.C_3^3$$C_3^3.C_6^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_4\times C_3^4.S_3^2$