Properties

Label 6948.b.3474.a1.a1
Order $ 2 $
Index $ 2 \cdot 3^{2} \cdot 193 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(3474\)\(\medspace = 2 \cdot 3^{2} \cdot 193 \)
Exponent: \(2\)
Generators: $a^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_{2316}:C_3$
Order: \(6948\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 193 \)
Exponent: \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 3$, and an A-group.

Quotient group ($Q$) structure

Description: $C_{1158}:C_3$
Order: \(3474\)\(\medspace = 2 \cdot 3^{2} \cdot 193 \)
Exponent: \(1158\)\(\medspace = 2 \cdot 3 \cdot 193 \)
Automorphism Group: $C_{579}.C_{192}.C_2$
Outer Automorphisms: $S_3\times C_{64}$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 3$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:(C_2\times \OD_{16})$, of order \(444672\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 193 \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{2316}:C_3$
Normalizer:$C_{2316}:C_3$
Minimal over-subgroups:$C_{386}$$C_6$$C_6$$C_6$$C_6$$C_4$
Maximal under-subgroups:$C_1$

Other information

Möbius function$579$
Projective image$C_{1158}:C_3$