Subgroup ($H$) information
Description: | $C_2$ |
Order: | \(2\) |
Index: | \(3474\)\(\medspace = 2 \cdot 3^{2} \cdot 193 \) |
Exponent: | \(2\) |
Generators: |
$a^{6}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Ambient group ($G$) information
Description: | $C_{579}:C_{12}$ |
Order: | \(6948\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 193 \) |
Exponent: | \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{579}.C_{192}.C_2$ |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_3\times C_{12}$ | |||||
Normalizer: | $C_3\times C_{12}$ | |||||
Normal closure: | $D_{193}$ | |||||
Core: | $C_1$ | |||||
Minimal over-subgroups: | $D_{193}$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_4$ |
Maximal under-subgroups: | $C_1$ |
Other information
Number of subgroups in this conjugacy class | $193$ |
Möbius function | $3$ |
Projective image | $C_{579}:C_{12}$ |