Properties

Label 6912.ln.8.g1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:D_6\times A_4$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(8,12)(14,15), (1,2,3)(10,11,13), (1,2)(5,7), (9,13)(10,11), (4,7,5), (1,2,3)(4,7,5), (9,11)(10,13), (14,15)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3:S_4\times \GL(2,\mathbb{Z}/4)$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3.(C_3\times A_4^2).C_2^5$
$\operatorname{Aut}(H)$ $S_4^2\times \AGL(2,3)$
$W$$C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_3:S_3\times \GL(2,\mathbb{Z}/4)$
Normal closure:$C_2\times A_4^2:D_6$
Core:$C_2^2:C_6^2$
Minimal over-subgroups:$C_2\times A_4^2:D_6$$C_3:S_3\times \GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$A_4\times C_6^2$$C_6:S_3\times A_4$$C_6:S_3\times A_4$$C_6:S_3\times A_4$$C_2\times A_4\times D_6$$C_2\times A_4\times D_6$$C_6^2:C_2^3$$C_6^2:C_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times A_4^2.D_6$