Properties

Label 6912.ku.8.HP
Order $ 2^{5} \cdot 3^{3} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times S_3^3$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2,3), (1,2), (4,5,6,7), (1,3,2)(4,7,6,5)(8,14)(9,10)(11,12), (9,13), (9,13,10), (8,15,14)(9,13,10), (4,6)(5,7)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^3:(C_2^2\times D_4^2)$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^5.C_2^6.C_2^6$
$\operatorname{Aut}(H)$ $C_2^2\times S_3^3:S_4$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$W$$C_2\times S_3^3$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$D_{12}:D_6^2$
Normal closure:$C_{12}:D_6^2$
Core:$C_{12}:S_3^2$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$8$
Möbius function not computed
Projective image$S_3^3:C_2^4$