Properties

Label 6912.ia.6.o1
Order $ 2^{7} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_4\times \SL(2,3)$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(5,7), (4,7)(5,6), (4,5)(6,7)(8,14,15,12)(9,11,10,13), (1,2,3), (1,2), (8,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $D_6.S_4^2$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times A_4^2.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $(C_6\times A_4).C_2^3.C_2^5$
$W$$C_2^2:D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$S_3\times D_4\times \GL(2,3)$
Normal closure:$S_3\times S_4\times \SL(2,3)$
Core:$C_2\times D_6\times \SL(2,3)$
Minimal over-subgroups:$S_3\times S_4\times \SL(2,3)$$S_3\times D_4\times \GL(2,3)$
Maximal under-subgroups:$C_2\times D_6\times \SL(2,3)$$C_2\times D_6\times \SL(2,3)$$C_4\times S_3\times \SL(2,3)$$C_3:D_4\times \SL(2,3)$$D_{12}\times \SL(2,3)$$C_3\times D_4\times \SL(2,3)$$C_3:D_4\times \SL(2,3)$$C_2\times D_4\times \SL(2,3)$$S_3\times D_4\times Q_8$$C_6^2:C_2^3$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$S_3\times S_4^2$