Properties

Label 6912.hn.72.l1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times D_6$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,13)(10,11), (7,13)(8,14)(9,11)(10,12), (1,3,5), (9,12)(10,11), (1,5)(2,6)(8,13)(10,11), (7,14)(8,13)(9,12)(10,11)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Ambient group ($G$) information

Description: $D_6^2:C_2^2:A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_4\times A_4).C_2^5.C_2$
$\operatorname{Aut}(H)$ $S_3\times C_2^5:D_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$W$$D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\wr C_2^2\times S_3$
Normal closure:$C_6^2.C_2^4$
Core:$C_2^3$
Minimal over-subgroups:$C_6^2:C_2^3$$C_2^4:D_6$$C_2^3:C_4\times S_3$$D_{12}:C_2^3$
Maximal under-subgroups:$S_3\times D_4$$S_3\times D_4$$C_2^2\times D_6$$C_4\times D_6$$S_3\times D_4$$S_3\times D_4$$C_6:D_4$$C_2\times D_{12}$$C_2^2\times D_6$$C_6\times D_4$$C_6:D_4$$C_2^2\times D_4$
Autjugate subgroups:6912.hn.72.l1.b1

Other information

Number of subgroups in this conjugacy class$18$
Möbius function$0$
Projective image$C_6^2.(D_4\times A_4)$