Subgroup ($H$) information
| Description: | $C_6^2:C_4$ |
| Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(1,5)(2,6), (7,13)(8,14)(9,10)(11,12), (1,3,5)(2,6,4), (7,14)(8,13)(9,12)(10,11), (1,6,5,4)(2,3)(7,10,14,11)(8,12,13,9), (2,6,4)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $D_6^2:C_2^2:A_4$ |
| Order: | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.(C_4\times A_4).C_2^5.C_2$ |
| $\operatorname{Aut}(H)$ | $F_9:C_2\times S_4$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) |
| $W$ | $C_6^2:C_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $6$ |
| Möbius function | $0$ |
| Projective image | $C_6^2.(D_4\times A_4)$ |