Properties

Label 6912.hn.432.bq1.a1
Order $ 2^{4} $
Index $ 2^{4} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,6,5,4)(2,3)(7,12,14,9)(8,11,13,10), (7,12,14,9)(8,10,13,11), (1,5)(4,6), (7,14)(8,13)(9,12)(10,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_6^2:C_2^2:A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_4\times A_4).C_2^5.C_2$
$\operatorname{Aut}(H)$ $\GL(2,\mathbb{Z}/4)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_4^2$
Normalizer:$C_4^2.C_2^3$
Normal closure:$C_6^2.(C_2^3\times C_4)$
Core:$C_2$
Minimal over-subgroups:$C_3^2:C_4^2$$C_4\times D_4$$C_4\times D_4$$C_2\times C_4^2$$C_4^2:C_2$$C_4^2:C_2$$C_4\times D_4$$C_4\times Q_8$
Maximal under-subgroups:$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$

Other information

Number of subgroups in this conjugacy class$54$
Möbius function$0$
Projective image$C_6^2.(D_4\times A_4)$