Properties

Label 6912.hn.432.bd1.a1
Order $ 2^{4} $
Index $ 2^{4} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(8,13)(10,11), (4,6)(7,13)(8,14)(9,11,12,10), (9,12)(10,11), (7,14)(8,13)(9,12)(10,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $D_6^2:C_2^2:A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_4\times A_4).C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times D_6$
Normalizer:$C_2\wr C_2^2\times S_3$
Normal closure:$C_2^3.D_6^2$
Core:$C_2^3$
Minimal over-subgroups:$C_2^2:C_{12}$$C_6.D_4$$C_2^3:C_4$$C_2^2\wr C_2$$C_2^3:C_4$$C_2^2\wr C_2$$C_2^3:C_4$
Maximal under-subgroups:$C_2^3$$C_2\times C_4$
Autjugate subgroups:6912.hn.432.bd1.b1

Other information

Number of subgroups in this conjugacy class$18$
Möbius function$0$
Projective image$C_6^2.(D_4\times A_4)$