Properties

Label 6912.hn.288.g1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2^{5} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:D_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,13)(10,11), (1,5)(2,6)(7,10,14,11)(8,9,13,12), (1,3,5), (7,14)(8,13)(9,12)(10,11)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_6^2:C_2^2:A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_4\times A_4).C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$D_4$
Normalizer:$D_{12}:C_2^3$
Normal closure:$C_6^2.C_2^4$
Core:$C_2$
Minimal over-subgroups:$C_6^2:C_2$$S_3\times D_4$$S_3\times D_4$$D_4:S_3$$S_3\times D_4$$C_6:D_4$$D_{12}:C_2$$C_6:D_4$
Maximal under-subgroups:$C_2\times C_6$$D_6$$C_3:C_4$$D_4$
Autjugate subgroups:6912.hn.288.g1.a26912.hn.288.g1.b16912.hn.288.g1.b2

Other information

Number of subgroups in this conjugacy class$36$
Möbius function$0$
Projective image$C_6^2.(D_4\times A_4)$