Properties

Label 6912.hn.216.a1.a1
Order $ 2^{5} $
Index $ 2^{3} \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:C_2^2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(8,13)(10,11), (7,12)(8,10)(9,14)(11,13), (7,13)(8,14)(9,11)(10,12), (9,12)(10,11), (7,14)(8,13)(9,12)(10,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $D_6^2:C_2^2:A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3^2:C_6$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $F_9:C_2^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_4\times A_4).C_2^5.C_2$
$\operatorname{Aut}(H)$ $S_4\wr C_2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$W$$C_2^3:A_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_3^2:C_4$
Normalizer:$D_6^2:C_2^2:A_4$
Complements:$S_3^2:C_6$ $S_3^2:C_6$ $S_3^2:C_6$ $S_3^2:C_6$
Minimal over-subgroups:$Q_8:A_4$$C_6.C_2^4$$C_6.C_2^4$$Q_8:A_4$$Q_8:A_4$$D_4:C_2^3$$C_2\wr C_2^2$$C_2\wr C_2^2$
Maximal under-subgroups:$D_4:C_2$$C_2\times D_4$$C_2\times D_4$

Other information

Möbius function$0$
Projective image$C_6^2.(D_4\times A_4)$