Properties

Label 6912.hn.12.u1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2^2\times D_6):A_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,13)(10,11), (7,12)(8,10)(9,14)(11,13), (7,13)(8,14)(9,11)(10,12), (4,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_6^2:C_2^2:A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_4\times A_4).C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_2^4:D_6^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$W$$S_3\times C_2^3:A_4$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$(C_2\times D_6^2):A_4$
Normal closure:$(C_2\times D_6^2):A_4$
Core:$Q_8:A_4$
Minimal over-subgroups:$C_3^2:C_2\wr A_4$$S_3\times C_2\wr A_4$
Maximal under-subgroups:$C_3\times Q_8:A_4$$C_2\wr A_4$$(C_2\times C_{12}):D_4$$A_4\times D_6$
Autjugate subgroups:6912.hn.12.u1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_6^2.(D_4\times A_4)$