Properties

Label 6912.hn.12.e1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.(C_2^2\times C_4)$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(7,12)(8,10)(9,14)(11,13), (7,13)(8,14)(9,11)(10,12), (1,5)(2,6)(7,12,14,9) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $D_6^2:C_2^2:A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_4\times A_4).C_2^5.C_2$
$\operatorname{Aut}(H)$ $(A_4\times C_3:S_3).D_4^2.C_2$
$W$$C_2\times C_6^2:C_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_6^2.(C_2^3\times C_4)$
Normal closure:$C_6^2.(C_2^3\times C_4)$
Core:$C_2\times C_3^2:C_4$
Minimal over-subgroups:$C_6^2.(C_2^3\times C_4)$
Maximal under-subgroups:$C_3^2:C_4\times D_4$$C_3^2:C_4\times D_4$$C_3^2:C_4\times D_4$$C_3^2:C_4\times D_4$$C_6^2.C_2^3$$C_2\times C_3^2:C_4^2$$(C_6\times C_{12}):C_4$$C_2\times C_3^2:C_4^2$$(C_6\times C_{12}):C_4$$(C_6\times C_{12}):C_4$$C_3^2:C_4\times D_4$$C_3^2:C_4\times D_4$$C_3^2:C_4\times Q_8$$C_3^2:C_4\times Q_8$$C_4^2.C_2^2$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$C_6^2.(D_4\times A_4)$