Properties

Label 6912.hm.864.a1
Order $ 2^{3} $
Index $ 2^{5} \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(2\)
Generators: $\langle(8,13)(9,12), (9,12)(10,11), (7,14)(8,13)(9,12)(10,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $(C_2\times D_6^2):S_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $S_4\times S_3^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2^4\times A_4).C_2^4$
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times D_6^2$
Normalizer:$(C_2\times D_6^2):S_4$
Minimal over-subgroups:$C_2^2\times C_6$$C_2^2\times C_6$$C_2\times A_4$$C_2\times A_4$$C_2\times A_4$$C_2^4$$C_2^4$$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$$C_2^2:C_4$
Maximal under-subgroups:$C_2^2$$C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-864$
Projective image$D_6^2:S_4$