Subgroup ($H$) information
| Description: | $C_{12}:C_2^4$ |
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(7,10)(8,12)(9,13)(11,14), (3,5)(4,6), (8,13)(9,12), (8,9)(12,13), (1,6,3,2,5,4) \!\cdots\! \rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.
Ambient group ($G$) information
| Description: | $(C_2\times D_6^2):S_4$ |
| Order: | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.(C_2^4\times A_4).C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2^9.(D_6\times S_4)$, of order \(147456\)\(\medspace = 2^{14} \cdot 3^{2} \) |
| $W$ | $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $36$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $0$ |
| Projective image | $D_6^2:S_4$ |