Properties

Label 6912.hm.2.a1
Order $ 2^{7} \cdot 3^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2\times D_6^2):A_4$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,13)(9,12), (1,3,5)(2,4,6)(7,12,10,14,9,11)(8,13), (1,6)(2,3)(4,5)(7,11,14,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2\times D_6^2):S_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2^4\times A_4).C_2^4$
$\operatorname{Aut}(H)$ $C_6^2.(C_2^4\times A_4).C_2^3$
$W$$D_6^2:S_4$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_2\times D_6^2):S_4$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$(C_2\times D_6^2):S_4$
Maximal under-subgroups:$D_4:C_6^2:C_6$$C_3^2:C_2\wr A_4$$C_2^3.D_6^2$$S_3\times C_2\wr A_4$$D_6^2:C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$D_6^2:S_4$