Properties

Label 6912.hm.18.l1
Order $ 2^{7} \cdot 3 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4^2:S_3$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(8,13)(9,12), (7,10)(8,12)(9,13)(11,14), (9,12)(10,11), (3,5)(4,6)(7,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $(C_2\times D_6^2):S_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2^4\times A_4).C_2^4$
$\operatorname{Aut}(H)$ $S_3\times C_2^3.D_4^2$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$W$$C_2\wr C_2^2\times S_3$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_4^2:D_6$
Normal closure:$(C_2\times D_6^2):S_4$
Core:$C_2^2\times C_6$
Minimal over-subgroups:$(C_6\times D_{12}):D_4$$D_4^2:D_6$
Maximal under-subgroups:$C_3\times D_4^2$$C_2^4:D_6$$(C_2^3\times C_6):C_4$$C_2^4:D_6$$(C_2^3\times C_6):C_4$$D_{12}:D_4$$(C_4\times C_{12}):C_4$$C_2\wr D_4$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$D_6^2:S_4$