Properties

Label 6912.hm.16.i1
Order $ 2^{4} \cdot 3^{3} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4:C_6^2$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(7,10)(8,9)(11,14)(12,13), (7,8)(9,10)(11,12)(13,14), (8,9,10)(11,13,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2\times D_6^2):S_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2^4\times A_4).C_2^4$
$\operatorname{Aut}(H)$ $C_2^2.S_4^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_6:S_3\times S_4$
Normal closure:$C_3^2\times C_2^3:S_4$
Core:$C_3\times C_6$
Minimal over-subgroups:$C_3^2\times C_2^3:S_4$$C_6:S_3\times S_4$
Maximal under-subgroups:$C_6^2:C_6$$C_3^2\times S_4$$C_4:C_6^2$$C_6\times S_4$$C_6\times S_4$$C_3^2\times D_6$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_6^2:S_4$