Properties

Label 6912.hm.144.v1
Order $ 2^{4} \cdot 3 $
Index $ 2^{4} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:D_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,13)(9,12), (1,6,3,2,5,4)(7,14)(8,13)(10,11), (1,3,5)(2,4,6)(7,14)(10,11), (7,14)(8,13)(9,12)(10,11), (3,5)(4,6)(7,10)(8,12)(9,13)(11,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times D_6^2):S_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2^4\times A_4).C_2^4$
$\operatorname{Aut}(H)$ $C_2^4:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$S_3\times D_4^2$
Normal closure:$C_2^3.D_6^2$
Core:$C_6$
Minimal over-subgroups:$C_6:D_{12}$$D_4\times D_6$$C_2^3:D_6$$D_4\times D_6$$C_2^3.D_6$$C_{12}:D_4$$C_2^2:D_{12}$$C_2^4:S_3$
Maximal under-subgroups:$C_2^2\times C_6$$C_2\times D_6$$C_6:C_4$$C_3:D_4$$C_2\times D_4$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$D_6^2:S_4$