Properties

Label 6912.he.108.g1
Order $ 2^{6} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_2^3$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,5)(4,6), (7,12,14,9)(8,10,13,11), (1,5)(4,6)(8,13)(9,12), (1,6)(2,3) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $S_3^2:C_2\wr A_4$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2\times A_4).C_2^6$
$\operatorname{Aut}(H)$ $C_2^5.C_2^7:\GL(3,2)$, of order \(688128\)\(\medspace = 2^{15} \cdot 3 \cdot 7 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$D_4:C_2^4$
Normal closure:$D_4:D_6^2$
Core:$C_2$
Minimal over-subgroups:$C_{12}:C_2^4$$D_4:C_2^4$
Maximal under-subgroups:$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\times D_4$$C_2^5$$C_2^3\times C_4$$C_2^2\times D_4$$C_2^5$$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\times D_4$

Other information

Number of subgroups in this autjugacy class$54$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_6^2:(C_2\times A_4)$