Properties

Label 6912.fa.72.t1
Order $ 2^{5} \cdot 3 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:C_{12}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(9,11,14)(10,13,12), (1,5)(2,7)(3,6)(4,8)(9,11,14)(10,13,12), (1,8)(2,3) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_2^3\times C_6^2):D_{12}$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2\times A_4).C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2^7:D_4$, of order \(1024\)\(\medspace = 2^{10} \)
$W$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_2^5:D_6$
Normal closure:$(C_2^3\times C_6^2):D_{12}$
Core:$C_2$
Minimal over-subgroups:$C_6^2.D_4$$C_2^4.D_6$$C_2^3:D_{12}$$C_2^5:C_6$
Maximal under-subgroups:$C_2^2\times C_{12}$$C_2^2\times C_{12}$$C_2^3\times C_6$$C_2^2:C_{12}$$C_2^2:C_{12}$$C_2^3:C_4$

Other information

Number of subgroups in this autjugacy class$72$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$(C_2^2\times C_6^2):D_{12}$