Subgroup ($H$) information
| Description: | $C_6^2:C_4$ |
| Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(9,11,14)(10,13,12), (1,2,4,3)(5,7,8,6)(9,10)(11,12,14,13)(15,16), (11,14) \!\cdots\! \rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), and metabelian.
Ambient group ($G$) information
| Description: | $(C_2^3\times C_6^2):D_{12}$ |
| Order: | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.(C_2\times A_4).C_2^6.C_2$ |
| $\operatorname{Aut}(H)$ | $D_4\times F_9:C_2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
| $W$ | $S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $24$ |
| Number of conjugacy classes in this autjugacy class | $4$ |
| Möbius function | $0$ |
| Projective image | $(C_2^3\times C_6^2):D_{12}$ |