Subgroup ($H$) information
| Description: | $C_6^2:(C_2^2\times A_4)$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(9,11,14)(10,13,12), (1,5)(2,7)(3,6)(4,8)(9,11,14)(10,12,13), (11,14)(12,13) \!\cdots\! \rangle$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $(C_2^3\times C_6^2):D_{12}$ |
| Order: | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.(C_2\times A_4).C_2^6.C_2$ |
| $\operatorname{Aut}(H)$ | $\AGL(2,3)\times C_2^4.(C_6\times A_5).C_2$ |
| $W$ | $(C_2^2\times C_6^2):D_{12}$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $2$ |
| Projective image | $(C_2^2\times C_6^2):D_{12}$ |