Properties

Label 6912.fa.36.m1
Order $ 2^{6} \cdot 3 $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:S_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,3,6)(4,5,8), (1,2,4,6)(3,5,7,8)(9,10)(11,13)(12,14)(15,16), (2,7)(3,6), (2,6)(3,7), (15,16), (1,8)(2,6)(3,7)(4,5), (1,5)(2,7)(3,6)(4,8)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $(C_2^3\times C_6^2):D_{12}$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2\times A_4).C_2^6.C_2$
$\operatorname{Aut}(H)$ $A_4^2:C_2^3$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$W$$C_2^2:S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$D_6$
Normalizer:$C_2^5:S_3^2$
Normal closure:$(C_2^3\times C_6^2):D_{12}$
Core:$C_2^3:A_4$
Minimal over-subgroups:$C_2^2:S_4\times C_6$$(C_2^2\times C_6):S_4$$C_2^2\wr S_3$
Maximal under-subgroups:$C_2^3:A_4$$C_2^2:S_4$$C_2^3:D_4$$C_2\times S_4$$C_2\times S_4$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$(C_2^2\times C_6^2):D_{12}$