Properties

Label 6912.fa.12.h1
Order $ 2^{6} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2.D_6^2$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(9,11,14)(10,13,12), (1,5)(2,7)(3,6)(4,8)(9,11,14)(10,12,13), (1,8)(2,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $(C_2^3\times C_6^2):D_{12}$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2\times A_4).C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_6^2.C_2^6.C_2^6$
$W$$D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2\times C_6^2.C_2^4$
Normal closure:$C_6^2:(C_2^2\times S_4)$
Core:$C_3\times C_6$
Minimal over-subgroups:$C_2\times C_6^2.C_2^4$
Maximal under-subgroups:$C_6^2:D_4$$C_6^2.D_4$$C_6^2:D_4$$C_6^2.D_4$$C_6^2:C_2^3$$C_6^2:D_4$$C_6^2.D_4$$C_6^2:D_4$$C_6^2:D_4$$C_6^2:D_4$$C_6^2:D_4$$C_2^4:D_6$$C_2^3:D_{12}$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$(C_2^2\times C_6^2):D_{12}$