Subgroup ($H$) information
| Description: | $S_3\times D_6$ | 
| Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) | 
| Index: | \(96\)\(\medspace = 2^{5} \cdot 3 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | 
		
    $\langle(1,3,2)(4,5,6), (2,3), (7,8), (1,2)(4,5), (1,2,3)\rangle$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Ambient group ($G$) information
| Description: | $(C_2^3\times D_6^2):C_6$ | 
| Order: | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2^3:A_4$ | 
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Automorphism Group: | $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) | 
| Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) | 
| Derived length: | $2$ | 
The quotient is nonabelian, monomial (hence solvable), and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_5\wr C_2^2$, of order \(110592\)\(\medspace = 2^{12} \cdot 3^{3} \) | 
| $\operatorname{Aut}(H)$ | $D_6\wr C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) | 
| $W$ | $\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) | 
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | not computed | 
| Projective image | $D_6^2:(C_2\times A_4)$ |