Properties

Label 6912.dm.96.B
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{5} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_6$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,3,2)(4,5,6), (2,3), (7,8), (1,2)(4,5), (1,2,3)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $(C_2^3\times D_6^2):C_6$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^3:A_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5\wr C_2^2$, of order \(110592\)\(\medspace = 2^{12} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $D_6\wr C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^3:A_4$
Normalizer:$(C_2^3\times D_6^2):C_6$
Complements:$C_2^3:A_4$ $C_2^3:A_4$
Minimal over-subgroups:$C_6\times S_3^2$$D_6^2$$D_6^2$$S_3^2:C_2^2$
Maximal under-subgroups:$C_6:S_3$$S_3^2$$C_6\times S_3$$S_3^2$$C_2\times D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_6^2:(C_2\times A_4)$