Subgroup ($H$) information
Description: | $C_{43}:C_8$ |
Order: | \(344\)\(\medspace = 2^{3} \cdot 43 \) |
Index: | \(2\) |
Exponent: | \(344\)\(\medspace = 2^{3} \cdot 43 \) |
Generators: |
$b, b^{2}, c, b^{4}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_{43}:Q_{16}$ |
Order: | \(688\)\(\medspace = 2^{4} \cdot 43 \) |
Exponent: | \(344\)\(\medspace = 2^{3} \cdot 43 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{86}.C_{42}.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_{43}:(C_2^2\times C_{42})$ |
$\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(7224\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 43 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $D_{86}$, of order \(172\)\(\medspace = 2^{2} \cdot 43 \) |
Related subgroups
Centralizer: | $C_4$ | |
Normalizer: | $C_{43}:Q_{16}$ | |
Minimal over-subgroups: | $C_{43}:Q_{16}$ | |
Maximal under-subgroups: | $C_{172}$ | $C_8$ |
Other information
Möbius function | $-1$ |
Projective image | $C_{43}:D_4$ |