Properties

Label 688.17.2.c1.a1
Order $ 2^{3} \cdot 43 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{43}:C_8$
Order: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Index: \(2\)
Exponent: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Generators: $b, b^{2}, c, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{43}:Q_{16}$
Order: \(688\)\(\medspace = 2^{4} \cdot 43 \)
Exponent: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{86}.C_{42}.C_2^3$
$\operatorname{Aut}(H)$ $C_{43}:(C_2^2\times C_{42})$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(7224\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 43 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{86}$, of order \(172\)\(\medspace = 2^{2} \cdot 43 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{43}:Q_{16}$
Minimal over-subgroups:$C_{43}:Q_{16}$
Maximal under-subgroups:$C_{172}$$C_8$

Other information

Möbius function$-1$
Projective image$C_{43}:D_4$