Properties

Label 679477248.n.8._.Y
Order $ 2^{20} \cdot 3^{4} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^{16}.C_6^2.S_3^2$
Order: \(84934656\)\(\medspace = 2^{20} \cdot 3^{4} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,13,7)(2,14,8)(3,15,9,4,16,10)(5,18,12,6,17,11)(19,30,27)(20,29,28)(21,31,24,22,32,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^{16}.C_6^2.\PSU(3,2).C_2^2$
Order: \(679477248\)\(\medspace = 2^{23} \cdot 3^{4} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(21743271936\)\(\medspace = 2^{28} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ Group of order \(8153726976\)\(\medspace = 2^{25} \cdot 3^{5} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed