Properties

Label 6750.b.135.b1
Order $ 2 \cdot 5^{2} $
Index $ 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:D_5$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Index: \(135\)\(\medspace = 3^{3} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{3}, c^{3}d^{12}, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_5\times C_{15}^2):C_6$
Order: \(6750\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$
$\operatorname{Aut}(H)$ $C_5^2.\GL(2,5)$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)
$W$$C_5:D_5$, of order \(50\)\(\medspace = 2 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_{15}^2:C_2$
Normal closure:$C_5^3:C_2$
Core:$C_1$
Minimal over-subgroups:$C_5^3:C_2$$C_{15}:D_5$$C_{15}:D_5$
Maximal under-subgroups:$C_5^2$$D_5$$D_5$

Other information

Number of subgroups in this autjugacy class$120$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$0$
Projective image$(C_5\times C_{15}^2):C_6$