Subgroup ($H$) information
Description: | $C_{42}$ |
Order: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Index: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Generators: |
$bc^{42}, c^{24}, c^{56}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_4.D_{84}$ |
Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{42}.(C_2^5\times C_6).C_2$ |
$\operatorname{Aut}(H)$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_2\times C_{84}$ | ||
Normalizer: | $C_{42}:Q_8$ | ||
Normal closure: | $C_2\times C_{42}$ | ||
Core: | $C_{21}$ | ||
Minimal over-subgroups: | $C_2\times C_{42}$ | ||
Maximal under-subgroups: | $C_{21}$ | $C_{14}$ | $C_6$ |
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_4.D_{84}$ |